
/ ; jJ "' -k.,

Tools for Distributed Application Management

Keith MarzuUo

Mark Wood
Robert Cooper

Kenneth Birman

Department of Computer Science

CorneU University, Ithaca NY 14853
isis@cs.cornell.edu

Abstract

Distributed application management consists of monitoring and controlling an appli-
cation as it executes in a distributed environment. It encompasses such activities as

configuration, initialization, performance monitoring, resource scheduling, and failure

response.

In this paper we describe the Meta system: a collection of tools for constructing dis-

tributed application management software. Meta provides the mechanism, while the

programmer specifies the policy for application management. The policy is manifested

as a control program which is a soft real-time reactive program. The underlying appli-
cation is instrumented with a variety of built-in and user-defined sensors and actuators.

These define the interface between the control program and the application. The control

program also has access to a database describing the structure of the application and
the characteristics of its environment.

Some of the more difficult problems for application management occur when pre-
existing, nondistributed programs are integrated into a distributed application for which

they may not have been intended. Meta allows management functions to be retrofitted

to such programs with a minimum of effort.

Keywords and phrases: Distributed application management, configuration manage-

ment, distributed operating systems, dynamic reconfiguration, monitoring distributed
systems, rule-based systems, Isls.

1 Managing distributed applications

There is a great deal of difference between a program that pefform_s correctly and one that

performs well. A correct program does not fail or produce incorrect results, but a program
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that performs well makes efficient use of resources and behaves predictably over a range

of environmental and operating parameters. Writing distributed programs that perform

well is especially hard. Distributed programs are often expected to run in widely varying

configurations, from a single machine to tens or hundreds, and on machines of widely varying

performance or from different vendors. Often they must continue operating when some of
the machines on which they are running fail.

We call the activity of producing a distributed program that performs well for a given envi-

ronment distributed application management. Distributed application management involves

configuring the components of the system for a given hardware and software environment;

initializing the application in an orderly way; monitoring the behavior and performance of

the application; and scheduling work efficiently among the components of the application.

An application must be managed throughout its execution, continually reacting to a varying

workload, to changes in the environment, and to failures.

Traditionally, application management is either done manually or hard-wired into the code

of the application. A person familiar with the internals of the application must continually

monitor and control it, and some adaptations can be made only by reprogramming. In

practice, many aspects of application management are ignored, resulting in poorly engi-

neered systems that work most of the time, but often exhibit unpredictable performance,

become inconsistent, expose partial failures, and prove fragile when even small changes are

made to the hardware or software base. In our work, we seek to avoid the deficiencies of

this ad hoc approach by creating a framework favoring the construction of robust distrib-

uted management software and applications, and a set of tools--the Meta system--which

directly supports our approach.

A distributed computing environment causes many problems for application management,

compared with a nondistributed one. The performance data required for system monitoring

is distributed throughout the system, making it hard to access. Variable communication

delays mean that the data is less accurate, and is difficult to collate. The potential for im-

proved performance through concurrency is one of the attractions of a distributed system,

but this concurrency significantly complicates all aspects of the application. For instance,

components of the application must be initialized in a well-defined order that observes the

dependencies between components. Failures are a fact of life in distributed systems and

greatly complicate management. Most applications do not have strong reliability require-

ments, but unless special efforts are taken, the overall reliability of a distributed solution will

be much lower than that of some equivalent nondistributed program, since the frequency of

failures is directly related to the number of hardware components.

Additional problems for application management arise when existing nondistributed pro-

grams are re-used in a distributed program. Such re-use is an important way of reducing

the cost of distributed software development, but the resulting application often does not

perform well and may be difficult to manage. For example, the dependencies among the
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re-used components may be poorly defined, making program startup and recovery difficult,

and the kinds of internal state information necessary for performance monitoring and re-

source scheduling may not be made available by programs that were not intended to run as

part of a distributed application. As we shall explain, the Meta approach is well-suited to

applications which re-use existing software in this way.

Throughout this paper, we use the term application program to mean a distributed applica-

tion composed of one or more processes. A process is a single nondistributed address space,

e.g. a Unix process, with one or more threads of control. A component is a subsystem of

the overall application, comprising one or more processes, or occasionally a component of
the environment such as a file server or a workstation.

In the rest of this paper, we describe the mechanisms that Meta provides for application

management, how they are implemented, and how they can be used. The next section

lays out the Meta application architecture. We show how the management functions are

separated from the underlying application, and how these two layers interact with Meta. In

Section 3 we present an example of a scientific computing application in order to motivate

a more detailed presentation of Meta. The following three sections describe the Meta

system in detail. Section 4 is about instrumenting the application program with sensors

and actuators which will be used for monitoring and control. Section 5 is about describing

the structure of the program in terms of its component processes. Meta stores this structural

information in a database. Section 6 presents the rule-based language in which management

policy is expressed. Meta translates these rules into sequences of sensor and actuator

invocations. In Section 7 we discuss issues of atomJcity and consistency. We conclude by

comparing our approach with existing technologies for distributed application management

and noting the directions along which we are extending Meta.

2 The Meta application architecture

The Meta model of a distributed application is depicted in Figure 1. In this model, the

management aspects of an application are separated from its major functional parts, and the

interface between these two layers is well defined. In this way, modifying the management

of an application is easier, and is less likely to impair the correctness of the rest of the

program.

We call the management layer the control program. While, the underlying application is

built using conventional programming tools, the control program can be programmed in a

language called Lomita. The Meta system is interposed between the control program and the

application, and presents the control program with an abstract view of the application and

the environment in which it runs. As shown in Figure 1, not all communication between the

control program and the application need go through Meta. The structure of the application
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Figure 1: Meta application architecture

prograan--its constituent components and their interconnections--is declared to Meta in the

form of an object-oriented data model.

The control program observes the behavior of the application by interrogating sensors, which

are functions that return values of the application's state and its environment. Similarly,

the behavior of the underlying application and its environment can be altered by using

procedures called actuators. Meta provides a uniform, location-independent interface to

both built-in and user-defined sensors and actuators. This interface also provides ways to

combine multiple sensor values in order to compute more complicated sensors or to provide
tolerance of failures.

The particular sensors and actuators that are used depend on the application being con-

trolled. Typical sensors could include:

• The CPU utilization on a machine. This is one of a number of built-in sensors provided

by Meta.

• The load on an application component. This might be the size of the component's

input job queue. Such a user-defined sensor can be implemented by supplying a

procedure in the component that will calculate the value when needed, or by directly

monitoring a variable in the process's address space.
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The total throughput of the application. This might be computed by combining the

data from a number of more primitive sensors located in each component of the

application. Meta provides ways to specify such derived sensors and associates well-
defined semantics with them.

The status of a component, i.e. failed or operational. Meta provides built-in sensors

that test for the existence of a process, but one can also supply a user-defined sensor

that implements an application-specific liveness criterion.

Typical actuators could include:

Change a process's priority. This might be a built-in actuator used to control fine-

grained scheduling.

Change a lightweight thread's priority. This might be done by modifying some variable

within a designated process's address space, or by invoking a user-specified procedure

in some process.

Restart a failed process. This might involve selecting a machine on which to restart

a failed process, initializing the process, and integrating the new process into the

pre-existing components.

Meta offers several interfaces by which programs can query sensors and invoke actuators.

The basic interface is from one of the programming languages in which the application may

be written: currently C, Fortran or Lisp. Other higher-level interfaces include the control

language, Lomita, which combines a real-time interval logic with a rule-based syntax for

querying sensors. As described later, the semantics of Lomita cleanly captures the temporal

nature of significant complex events in the distributed application. Meta executes Lomita

commands using a fault-tolerant distributed interpreter.

Meta is implemented using the Isis distributed programming toolkit [Birman and Joseph

1987]. Isis provides primitives for reliable programming including process groups and or-

dered atomic multicast. On top of these primitives, Isxs provides a toolkit of solutions

to common sub-problems in distributed computing such as distributed synchronization,

resilient computation, and logging and recovery.

3 An example application: Seismological analysis

To make the discussion of sensors and actuators more concrete, we present an example

application and show how it is managed within the Meta framework. The application, Nu-

Mon, is a seismological analysis system intended primarily for monitoring compliance with
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nuclear test-ban treaties. A real nuclear monitoring system, on which this simplified exam-

ple is based, is being developed using Meta and Isls by Science Applications International
Corporation. 1
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Figure 2: Simplified seismological monitoring application

NuMon consists of four component process types (see Figure 2). The SigPro processes

collect seismological data and perform signal processing on it. The much smaller resulting

processed data is stored in the DataStore. The Assess process is an interactive expert

system that interprets the data produced by multiple SigPro processes and forms hypotheses

about various events. To confirm these hypotheses, further tasks are assigned to the SigPro

processes. Assess stores its event classifications in the DataStore. The structure of the real

application is much more complex, with several kinds of SigPro processes that are created

in response to different events detected by Assess.

The LanManager contains the control program for NuMon. During normal operation the

control program schedules work efficiently among the available machines. When individual

machines crash it reapportions work automatically, and when total failure occurs it restarts

the application. In the remainder of this section we will relate the issues addressed by the

LanManager to the Meta sensor/actuator model.

3.1 The LanManager

The LanManager embodies the control policy for configuration, scheduling and response to

failures. This policy is expressed in the form of a rule base. Its second function is to support

tDARPA Contract MDA972-88-C-0024.
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a graphical user interface which displays the current system state and allows the user to

alter policy rules or issue commands to tune the performance of the application. Thus

the LanMaoager takes a semi-automatic approach to application management. Common

activities such as system startup and shutdown and individual machine failures can be

handled without human intervention. But other, perhaps unforeseen, circumstances can

be given to the user to handle. Typical examples include a persistent software error that

causes some component to crash no matter how many times it is restarted, or a full disk.

3.2 The SigPro performance sensors

The SigPro processes are computation engines that service requests from Assess and inter-

active users of the system, and process the input data. The SigPro processes derive from

large sequential Fortran programs developed by seismologists with little experience in dis-

tributed programming. A crucial requirement, therefore, was that application management

functions be easy to add to these large programs without requiring substantial modification

of the Fortran code.

In order to schedule work among these tasks and start auxiliary $igPro processes when

needed to improve throughput, each $igPro exports two performance sensors: the load

sensor and the backlog sensor. The backlog sensor measures the backlog of input data to be

processed. It corresponds to a program variable in SigPro. The load sensor is a procedure
that returns a measure of SigPro load by combining load factors such as the current size

of the input task queue and the recent activity within the process. The interface by which

these sensors are made available to Meta is explained in Section 4.

The LanManager will typically examine sets of sensor values, such as the average of all the

SigPro load sensors, or the maximum of a load sensor over the last two minutes. These

kinds of operations are directly supported by Meta through the notion of derived sensors,

which may be computed from primitive sensors values using a number of built-in functions.

Meta addresses the issues of sampling skew, imprecision and dynamic group membership

changes that arise when deriving sensor values in a distributed computing environment.

3.3 SigPro fault tolerance

If the Assess process fails (for example the machine on which it is running crashes), a new

copy of Assess should be started elsewhere. The LanManager must therefore monitor the

Assess process, choose a new location to restart Assess after a crash, and reconnect this new

process to the $igPro and DataStore subsystems. Then the work that was in progress at the
crashed Assess must be assigned to the newly created Assess.
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The LanManager uses the capabilities of Meta and Isis to accomplish these actions in a

fault-tolerant manner. The Assess process uses the Isis spooler tool to log its actions and

to periodically checkpoint its state. In this way, when it fails there is a stable record of

the tasks it was engaged in and its progress. Some of the built-in Meta sensors are used

to detect failure, and to identify suitable alternative machines on which Assess can be run.

Meta actuators are invoked to restart Assess with the correct spool file, and to re-establish

connections to the rest of the application.

3.4 LanManager fault tolerance and atomicity

The LanManager itself must tolerate failures. If it crashes, it can regain much of its state

by sensing the application and environment through sensors. Other important state can be

checkpointed using a tool such as the Isis spooler.

However, if the LanManager fails midway through the sequence of sensor and actuator in-

vocations intended to restart an Assess process, we may find that two copies of Assess or

none at all were started. To solve this, each control program rule is executed atomically

by the Meta rule interpreter, using the facilities of the underlying Isis system. Thus the

programmer is able to concentrate on writing a consistent set of policy rules for the Lan-

Manager, leaving most of the issues of fault tolerance in their execution to the interpretation

algorithm supplied by Meta. However in the case where a rule undertakes real-world ac-

tions, the issue of atomicity is more complex. A discussion of this is deferred to Section 7.

Having described a simple distributed application and its management requirements, we

will describe the Meta system in detail.

4 Instrumenting a distributed application

There are three steps to using Meta to manage an application like NuMon, and these are

described in the next three sections. First, the programmer instruments the application

and its environment with sensors and actuators. These functions, along with a set of

built-in sensors, provide the interface between the control program and the application

program. Second, the programmer describes the structure of the application using the

object-oriented data modeling facilities of the Lomita language. Finally, the programmer

writes a control program referencing this data model. The control program may be written

as a Lomita script or in a conventional language, such as C, embedded with calls to the

Lomita interpreter. The control program can make direct calls on sensors, actuators and

other functions in the data model and use higher level policy rules that specify a set of

conditions over sensors and the action to take when a given condition becomes true. Meta
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can be thought of as an object-oriented temporal database, 2 but where the application and

environment provide the data values. Figure 3 shows this functional layering of the Meta

system.

Policy Layer
when SigProGroup.load > 5 do

create SigPro[...]

Data Model

Structure of controlled system

Sensors and Actuators

t L
SigPro.load I Machine.rexec

Figure 3: Meta Functional Architecture

We describe these layers from the bottom up. This section describes how sensors and

actuators are specified and used by Meta. Section 5 describes Meta's data modeling facilities

and Section 6 describes how to write the control program of a distributed application.

4.1 Sensors

A Meta sensor represents part of the state of the monitored application. Each sensor is

identified by the kind of application component it monitors (e.g. SigPro), the kind of value

it monitors (e.g. backlog), and the instance of the component it is monitoring (e.g. SP1). A

sensor can be polled in order to obtain its current value, and a watch can be set up that

alerts the client when the sensor value satisfies some predicate.

Built-in sensors

Meta provides a set of built-in sensors corresponding to information that can be obtained

directly from the environment. Examples of these are sensors which return statistics such

2By temporal we mean simply that the database supports a notion of time. In the terminology of Ahn and

Snodgrass [1985], Meta can be thought of as either a historical or a rollback database because the enterprise

being modeled by Meta is monotonic.
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as the memory and processor usage of a process, obtained from Unix. Furthermore, Meta

provides the read_var sensor for reading the values of certain kinds of global variables in

an active process. This is implemented with the Unix system call that permits access to

another process's address space for debugging purposes. The alive sensor is a built-in sensor

that returns false if the component it is monitoring has failed.

User-defined sensors

Meta allows the programmer to define and implement primitive sensors. Such sensors corre-

spond to dynamic properties of the application whose values cannot be supplied by simply

polling the state of the underlying operating system. Sensors in this class are registered

with Meta at run-time. Each application process that contains a user-defined sensor must

connect itself to Meta when it is started up by calling meta_init:

meta_init (name, instance);

The name argument is the component type name (e.g. SigPro) and instance is an instance

identifier (e.g. SP1). An instance identifier can be a uniquely generated name, as in this

example, or a more human-understandable quantity such as a machine name. It is the

responsibility of the application writer to ensure that instance identifiers are unique for a

given component type.

Having issued this call, the process may explicitly export sensors. For example, the following

C procedure implements a simple SigPro load sensor:

int work_load (int *value)
(

value ----work_queue_size + 2*mbytes_ in_use;

return (0);
}

where work_queue_size and mbytes_ in_ use are global variables maintained elsewhere in the

process. This sensor procedure is made available to Meta by calling the new_sensor proce-

dure in the Meta run-time library:

s_id = new_sensor (work_load, "load", TYPE_INTEGER, 100);

The new_sensor procedure returns an internal identifier for the sensor instance that the

client can use for later communication with Meta. The first two arguments establish the

binding between the sensor name and the procedure that returns the sensor's value. The

third argument specifies the type of the sensor's value and the fourth argument defines the

minimum polling interval in milliseconds. The sensor should be polled at this (or a shorter)



4 INSTRUMENTING A DISTRIBUTED APPLICATION 11

period to avoid missing significant events. Meta uses the polling interval to determine

the sampling frequency needed to implement the watch operator which waits for a simple

predicate on the sensor value to be satisfied.

If the minimum polling interval is specified as zero, then there is no a priori minimum

polling interval. In this case, Meta must be notified when the value being sensed changes

in a significant way. The monitored program does so through the call:

check_ sensor (s_id);

This procedure can be called by the application as a hint to Meta even when a non-zero

minimum polling interval was specified.

If the value of a sensor is simply the contents of a single global variable in a process, which

is the case with the SigPro backlog sensor, then Meta's bnilt-in read_var sensor can be used.

This avoids explicit calls to meta_init and new_sensor in the code for the process, which

simplifies adding application management to existing programs.

With both user-defined sensors and the read_var sensor, some thought should be given to

synchronizing changes to the variable by the process and accesses to it via the sensor. In

the case of sensor procedures, it is possible to use programming techniques such as mutual

exclusion locks and semaphores to achieve this. With the read_var sensor, however, the only

synchronization provided is the hardware memory interlock. Thus the global variable's value

should be represented in one word or less (where "word" is the unit over which the memory

interlock operates).

4.2 Actuators

Actuators are named and referenced in the same fashion as sensors. Meta supplies a number

of built-in actuators. These include an actuator to start up a process with a given argument

list, and a global variable actuator which allows a global variable in a process to be modified.

As is the case with the global variable sensor, the interactions between the actuator and the

internal operations of the process are synchronized only by the hardware memory interlock.

A process can be instrumented with user-defined actuator procedures in a similar way to

sensors. For example, we might have a SigPro.reset_file actuator:

void reset_file (char *file)
{

cancel_ current_work = TRUE;

new_file = file;

}
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that causes the process to stop work on its current data file, and begin work on a different

file. The SigPro program declares this actuator by calling:

reset_ id = new_ actuator (reset_file, "reset_file", ACT_ SERIAL);

The last argument specifies whether multiple concurrent invocations of the actuator are

permitted (ACT_CONCURRENT), or as in this case, that multiple actuator calls must be

mutually excluded in time (ACT_SERIAL). Clearly, triggering the reset_file actuator also

raises questions of atomicity to failures. We defer this discussion to Section 7.

5 Describing an application and its environment

Once an application is instrumented with sensors and actuators, the programmer writes a

control program to manage the application. The control program is usually written in the

Lomita language. Lomita comprises two sub-languages: one is an entity-relationship data

modeling language used to describe the structure of the application and the sensors and

actuators with which it is instrumented. The other is a rule-based language for expressing

management policy rules. In this section, we describe the Lomita data model, and show

how sensors can be combined to form more complex sensors. In the following section we

present the Lomita rule-based language.

5.1 The Lomita data model

In order to describe an application, the programmer develops a schema using the Lomita

data modeling language. For exposition, we show in Figure 4 part of the Lomita description

of the seismological monitoring application.

Components in the application and the environment are modeled by entities, following

entity-relationship database terminology [Chen 1976]. An entity is similar to a record or

object in a programming language. The example includes a Machine entity that models a

computer, and a Process entity that is a process running on a computer. Since one of the

functions of the control program is to allocate environment resources such as processors

and peripherals to the application, all these must be represented in the data model. Like

entities are grouped together in entity sets which are similar to data types or classes.

The "fields" or "instance variables" of an entity are called attributes. Lomita supports

three kinds of attributes: properties, sensors, and actuators. Sensors and actuators were

introduced above. Properties are static attributes whose values are stored in an internal

database, rather than being sensed directly from the application or its environment. For

example, the processor-type of a machine is a property. One or more of an entity set's
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Machine: external entityset

attributes

key name: string
sensor load: real

sensor users: {string}

sensor jobs: {string}

actuator exec(strlng, string)
end

end

Process: dependent Task entityset
attributes

key instance: UID

property params: string

property executable_file_name: string
sensor alive: integer

sensor read_var(string): any

actuator write_var(string, any)
actuator exit

end

end

Task: relation Process - > Machine

operations
create

Process.instance := new- uid0
do

Machine.exec(executable_file- name, params)
end

delete do Process.exit() end
end

end

SigPro: Process entltyset

attributes

sensor Joad: integer

property executable_file_name: string := "/usr/numon/bin/sigpro"

property params: string

actuator reset_file (string}
end

end

SigProGroup: SigPro aggregate
attributes

key program- name: string

sensor load: integer :-- mean(Process.load)

end

select all

end

FreeMachines : Machine aggregate

attributes

key unique
end

select m suchthat size(Machine[m].jobs) <= 1 & Machine[m].load <= 0.5

end

Figure 4: Data model for seismological application
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properties, called the primary key, uniquely identifies each entity. For instance, the primary

key of the machine entity might be its name.

Lomita provides ways to specify a rich set of connections and groupings between compo-

nents. A relationship set specifies one-to-one, many-to-one and many-to-many relations

between components. For instance, there is a many-to-one relationship between processes

and the machine on which they run. Thus the definition for the entity set Process specifies

that a Process entity is dependent upon the existence of some Machine entity through the

relationship set Task. A dependent entity may not exist by itself; it can be created only

by creating a relationship in the specified relationship set. In the seismological monitoring

application, a process's sensors can not be accessed unless it is running on some machine.

The definition of an entity set or a relationship set may contain data model operations to be

executed when an entity or relationship is created or deleted. For example, Figure 4 shows

create and delete operations for the Task relationship. The create operation ensures that

the Process.instance property is initialized, and then invokes the Machine.exec actuator to

start up the process. Not all entities need contain creation and deletion operations. Those

that do not, for instance the Machine entity set in Figure 4, must be added and removed

outside the control of Meta, via the database.

Often,one entitywillbe an extensionof another. This isthe case with the SigPro entity

setin Figure 4,which isbased on the Processentity,with a few additionalfields.This is

modeled in Lomita with a subtypeentityset.The subtype inheritsallthe originalentity's

attributesand optionallyadds new ones. An inheritedattributethat had type any in the

parentmay be refinedto a specifictype in the new entityset.

An aggregate groups together related entities into a single new entity, which may define

attributes of its own. For example, the SigProGroup entity set is an aggregate consisting of

all SigPro processes. The FreeMachines aggregate collects together a subset of the Machine

entities that are lightly loaded. The members of an aggregate may be specified by a select

operation, and must be drawn from the same entity set.

Although Lomita describes the modnlar structure of the program that it is controlling,

Lomita itself lacks a notion of modularity. We wish to allow several Lomita control programs

to co-exist within one distributed system without name conflicts arising over the names of

entities and relationship sets. But we also want Lomita programs controlling related but

independent subsystems to be able to interact in well-defined ways. To this end we are

experimenting with ways of structuring multiple Lomita programs. This may be possible

entirely within the current Lomita language definition, or it may require additions to the

language. In the meantime, multiple Lomita programs can be completely insulated from

each other using the facilities of Isls.
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5.2 Derived sensors

Primitive sensor values obtained from the application program can be combined in the

form of derived sensors, which provide a higher-level view of the behavior of the program.

A derived sensor may combine values from a number of different primitive sensors, or

from a single sensor over a time interval. Derived sensors are defined by simple arithmetic

expressions augmented with some more powerful combining operations.

The following SigProTask relationship set definition illustrates the use of an arithmetic

expression to define a sensor giving the ratio of SigPro load to the Machine load:

SigProTask: Task relation SigPro - > Machine
attributes

sensor load_ratio: real := SigPro.load / Machine.load

o..

end

end

The SigProTask relationship set consists of (Machine, SigPro) pairs. Since the load_ratio

sensor is composed from primitive sensors in these two entity sets, it is natural that the

sensor definition appears in the SigProTask relationship set.

function

size(s)

max(s)
min(s)

range(s)

mean(s)
deviation(s)

choose(a)

description

Number ofelements in sets

Maximum value of numeric set s

Minimum value of numeric set s

maxCs) - min(s)
Mean value of numeric set s

Standard deviation of numeric set s

Return an arbitrary element of aggregate a

Table 1: Meta sensor functions

In addition to simple arithmetic operations, Lomita provides the functions listed in Table 1

that operate over sets of values. With the exception of choose, these functions have three

overloaded meanings. First, they may be applied to a set returned from a set-valued sensor

such as Machine.users. The following Machine entity set definition includes a sensor that

gives the current number of users on a machine during the last ten minutes:
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Machine: entityset
attributes

key name: string

sensor users: {string}

sensor n_users: integer := size(users)

end

end

In their second form, these functions take two arguments (s and t). The function is computed

over the set of values that the sensor s took during the last t seconds. For example, the

following SigPro definition contains a derived sensor high_ load that is the maximum load in
the last ten minutes.

SigPro: Process entityset
attributes

sensor load: integer

sensor high_load: integer := max(load, 600)

end

end

The third interpretation applies to the individual sensors of the components comprising an

aggregate entity. Thus max(s) is the maximum value of the sensors s of each component

of the containing aggregate entity. The following SigProGroup aggregate definition includes

a sensor that gives the maximum load of all the SigPros in the group during the last ten
minutes:

SigProGroup: SigPro aggregate
attributes

key port: integer

sensor max_load: integer := max(high_load)

...

end

end

5.3 Meta-tarsis: A prototype schema

In some ways, Lomita is too general to be convenient. The structure of most distributed

applications will include common components such as machines, processes, process groups

and so on. We are developing a Lomita data model called Meta-tarsis that can be used as
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a prototype for most distributed applications, and modified as necessary for a particular

setting. Meta-tarsis provides some basic entity and relationship sets that will be common

to most application areas. It includes entities for workstations, file servers, networks and

processes. There are relationships for common process organizations such as a server and

its clients, a pool of processing slaves controlled by a single master process, and a group of

processes replicated for resilience.

Meta-tarsis contains a much more complete notion of Machine than the example just pre-

sented. It includes attributes such as physical location, owner, processor type, floating point

coprocessor type, operating system type and version, and local sub-network identification.

These permit a reasonably intelligent allocation of machines to tasks, for instance, by as-

signing floating-point-intensive jobs only to machines with a floating point coprocessor. The

Process entity set contains all the built-in sensors and actuators mentioned in Section 4.

There is a relationship set FailureClass which is intended to identify machines that may

experience common-mode failures. For instance, two diskless workstations that share a
common disk server machine would both fail if the disk server failed. When replication

is used to improve reliability it is vital that the replicas execute on machines in different
failure classes. These kinds of constraints can be expressed using a select clause such as

that which appears in the FreeMachines aggregate in Figure 4.

6 Expressing policy rules in Lomita

We now describe the highest level of Meta: the rule-based control language. Using the

Lomita data model of the application, the programmer writes a description of the intended

behavior of the system consisting of a set of Lomita policy rules. A policy rule is written

using the statement:

when condition do action

Intuitively, this statement declares that when the specified condition is observed, the stated
action is to be taken. The condition part of each rule is a predicate that is expressed on the

underlying data model. The action component is simply a sequence of actuator invocations

and data model operations.

Part of the control description for the NuMon application is shown in Figure 5. The when
rule states that when the number of $igPros becomes too low or their collective load becames

too high and remains continuously high for at least sixty seconds, a new $igPro is to be
started. The form of conditions is limited to simple predicates, optionally appearing in a

temporal logic expression. By limiting conditions to this form, they may be easily translated

into watches on sensors. Both primitive and derived sensors may be referenced.
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when size(sig_ pro_ group[program_ name]) < 2 ior
(during SigProGroup[program_name].load> 5 to 60

always SigProGroup[program_name].load> 5)
do

create Task (

Machine := choose(FreeMachines)
Process := create $igpro (params := "/usr/numon/data" )

)
end

Figure 5: Rule for creating new SigPros

The body of the when statement specifies a sequence of actions to be carried out. An action

may be an invocation of an actuator or a create or delete statement, which will invoke the

appropriate operation associated with that entity set. The create expression provides values

for any properties that are not initialized in the entity declaration. While Lomita permits

only a linear sequences of actions, more complex flow of control can be achieved either by

triggering multiple rules with more complex when conditions, or by writing more complex

actuators (e.g. in the C language). In the extreme, the control program can be written

almost entirely in C with embedded calls to Lomita for condition evaluation.

6.1 The Lomita rule interpreter

Lomita control programs are executed by an interpreter, which is replicated in order to

provide fault tolerance. To enforce rules, Lomita needs to communicate with the individ-

ual sensors and actuators in the application processes and the environment, such as the

Machine.jobs and SigPro.load sensors. Lomita uses Isis process groups to structure this
communication.

Lomita maintains a database about the current structure of the application. This database

contains the members of entity sets, the tuples in each relationship set, and the membership

lists for each aggregate. Most entities correspond to processes in the application being

controlled. In our example, a SigPro entity is a process running on some computer. The

Machine entity is implemented by a process that contains procedures for the sensors and

actuators in the Machine definition. One copy of this Machine process must be started

up on each computer which Meta will manage. For each of these entities, the database

keeps a reference to the process, and maintains the values of any properties associated with

the entity. Entities that do not correspond to processes, along with relationship sets and

aggregates, are maintained entirely within the database.
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6.2 Mapping entity sets to process groups

Entity sets that correspond to processes are represented by Isis process groups. In our exam-

ple, all the Machine entities belong to a process group with a name such as/Meta/Machine.

All groups associated with Meta have Meta as the first component of their names, followed

by the set name (Machine in this case).

An Isis group provides an easy way to organize the elements in an entity set and to com-

municate with them. Isis multicast is used to simultaneously access all copies of a sensor

or actuator in an entity set. Isis multicast is atomic: an actuator invocation is received

by all group members or by none of them. In addition, concurrent multicasts are ordered

consistently at all group members. Isis group semantics also ensure that Lomita has accu-

rate knowledge of the current membership of an entity set. Changes to the membership of

a group, either planned, such as when a new entity joins a group, or unplanned, such as a

failure of an entity process, are serialized with group communication.

The group structure of our example is shown in Figure 6. The replicated Lomita rule

interpreters all belong to a process group named/Meta/Lomita, so that application processes

have a well-known address to which to send sensor updates. The Meta database resides in

the same processes as the Lomita interpreters and thus exhibits identical fault tolerance.

Figure 6: Lomita process group structure
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6.3 Rule interpretation

The details of Lomita interpretation will be explained by describing the execution of the

rule shown in Figure 5. The when condition has two parts which axe or'ed together. The

first notices when the number of SigPros drops below two, and the second notices when

the composite load on the Sigpros exceeds five for one minute or more. To interpret the

first condition, a list is formed of the tasks belonging to the SigProGroup aggregate and the

size function is evaluated on that aggregate. Lomita re-evaluates size whenever an entity

is added to or removed from the corresponding entity set, for example, when a process is

created or terminates. Process creations are detected via the Process.create operation, and

process terminations with the Process.alive sensor.

The other condition is the interval temporal logic expression:

during SigProGroup[program_name].load > 5 to 60

always SigProGroup[program_narne].load > 5

Such expressions are converted to finite state automata, in which the state transitions occur

when part of the predicate becomes true or false. This expression involves an aggregate

sensor whose value Meta maintains by periodically polling the members of the group. Meta

then applies the aggregate function in order to compute the value of the aggregate sensor.

The finite state automaton for this expression is shown in Figure 7. The first state sets a

watch on the aggregate sensor in order to be notified when the load goes above a threshhold.

When this event occurs, the automaton transfers to the next state, arms an interval timer,

and waits for either the interval timer to go off or the watch to axrive noting that the load

has gone below the threshhold. If the next event received is the timer event, then the guaxd
is satisfied and the action is initiated.

load>5 _ load<5:Q

mer(60)

Figure 7: Finite State Automaton

If either the temporal logic expression or the condition on process group size is satisfied, the

action part of the rule is obeyed. In this case, Lomita uses Meta to obtain a lightly-loaded

machine An entry in the Task relationship is created and Lomita attempts to run the job

on the chosen machine. The action is synchronous, in that Lomita waits for actions to be

completed to enable it to detect failures. Upon failure the action is retried.
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6.4 Fault tolerance of the Lomita implementation

The Lomita interpreter is replicated to provide fault tolerance. One of the Lomita pro-

cesses is chosen to have primary responsibility for executing the control program, while the

extra processes are backups. These processes cooperate using the Isis coordinator-cohort

mechanism. The coordinator is the active party, sending out messages to effect the desired

application behavior. The other processes, cohorts, remain passive unless the coordinator

fails, at which point one of them is chosen as the new coordinator. While passive, the

cohorts receives all messages involving the coordinator and maintain an up-to-date view of

the system being monitored.

If the Lomita interpreter is replicated n times this architecture can survive n - 1 process

failures. The degree of fault tolerance required will vary depending upon the application.

Total failure occurs if all n Lomita processes fail. Lomita can recover from total failures

if the database is checkpointed to disk periodically, and updates to it are logged to disk.

Meta leaves the activation of this mechanism as an option for the application programmer,

because there are two other reasonable ways to cope with total failure of the control program

that avoid the need for logging.

First, each application process can monitor for the total failure of the/Meta/Lomita group.

If Lomita fails then the application could terminate itself. Simply restarting Lomita from its

initialization files would restart the application in an orderly way. By having the application

terminate itself, there is no possibility of "orphan" application processes surviving the failure

of the control program. Such orphan processes would generate much confusion when the

application was restarted.

The second option is to leave surviving application processes running, and arrange that

when the control program restarts it first searches for existing application processes from a

previous execution. In our example it would do this by looking for any existing members

in the /Meta/SigPro group. Once the orphans had been identified, they could either be

terminated, or re-initialized and integrated in the new instance of the application. Currently

we have not provided support for orphan detection in the Lomita language, however an Isis

program could perform this function at application startup.

7 Consistency and atomicity considerations

With Meta, distributed application management is a soft real-time reactive system. When

a condition becomes true, the control program notices this and reacts in a timely manner.

The control program should incorporate a model of how long its actions should take to

produce noticeable changes in the application that it is controlling.
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A number of properties are required of the Meta implementation to satisfy this model.

Meta must provide a predictable and preferably short delay between the occurrence of

some condition and its notification to the control program. For compound conditions, the

set of sensor value readings must be consistent. And, when multiple conditions might be

triggered concurrently there is a need for atomicity.

7.1 Real-time consistency

For the kind of monitoring involved with application management, a weak kind of real-time

consistency is needed. Several factors can affect the level of consistency achieved. First there

is the inherent inaccuracy in the sensor itself. Then there is the delay in communicating

new sensor values to Meta. Sensor values can be timestamped at their source so that no

matter what the delay, the time at which the sensor reading was taken will be known.

However inaccuracies between clocks on different machines (really just another kind of

sensor inaccuracy) introduce further uncertainty. To accommodate these inaccuracies, Meta

represents a sensor value (or a clock value) as an interval in which the true value lies. Thus a

sensor reading is treated as a two-dimensional interval: for a certain time period, the sensor

value is known to have fallen within a measured range. Under the assumption that sensors

are piecewise continuous, Meta can interpolate an estimate of the value that the derived

sensor took during a given interval of time. This approach is discussed fully elsewhere

[Marzullo 1989, Marzullo and Chew 1990].

Decision making in the presence of inaccurate sensors represented by intervals is more

complex than with point sensor values. With many sensors, taking the midpoint of the

interval and treating it as a point sensor value is appropriate. But this is not always

the case. Suppose we have a diskspace sensor that returns the number of bytes free on a

file system. A rule that is triggered when the available diskspace reaches a certain level

allows two interpretations: that the action be taken if at least the given level of diskspace

is available, or if at most the given level is available. A rule that waited for the disk to

become almost full before deleting temporary files might use the upper bound of the interval.

Conversely a rule that waited for the required space to become available before performing

a large file transfer should use the lower bound of the diskspace interval before proceeding.

Meta has logical operators for both of these interpretations. The user is expected to select

the one appropriate to the situation. Distributed evaluation of the resulting expressions is

discussed by Wood [1991].

Proper handling of issues such as the accuracy intervals for sensors and the latency before

actuators take effect is essential for producing a robust control program.
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Real-time consistency on Unix and ISIS

In the Unix environment in which Meta runs, clocks are approximately synchronized by

the Berkeley time protocol [Gusella and Zatti 1985], which achieves an accuracy of about

1 millisecond. Although Isis does not provide real-time message delivery guarantees, the

communication delay imposed by the Isis multicast primitives is normally around 10 to 30

milliseconds. However Unix provides unpredictable scheduling delays and virtual memory

waits. These can affect the responsiveness of Isis and the application itself to the notification

of new sensors values. Thus, to be conservative, we assume that the end-to-end sensor

latency can be as large as several seconds. It remains for the application programmer to

specify the accuracy intervals for sensors, and the minimum meaningful polling period. For

the kinds of applications which use Meta, polling intervals of several seconds, and up to a

minute are reasonable. In many cases the dominant consideration is that producing sensor

values should impose little overhead on the underlying application.

Although real-time responsiveness is clearly important, Meta currently offers no explicit

real-time guarantees. Instead, statistics characterizing the typical system response times

under various conditions are provided, and the designer is expected to ensure that the

application operates well away from the region at which deadlines might be violated. We

see little chance for improving on this approach as long as Meta remains a Unix application.

We are considering porting Isis and Meta to an operating system kernel such as Chorus

[Armand et al. 19891 that provides support for real-time scheduling. This should reduce

these performance figures and make them more predictable. However real-time multicast

[Cristian et al. 1986] and group membership algorithms are required to achieve the full

potential of the Meta sensor model.

7.2 Virtual synchrony

In addition to real-time consistency, Meta provides a high degree of logical consistency

through the semantics of Isis. By logical consistency, we mean a consistent total ordering

on events such as sensor readings, actuator invocations, and process failures. We call the

model that underlies Isis virtual synchrony because events appear to happen one-at-a-time.

The Isls implementation permits events to overlap or be re-ordered where such changes

have no effect on the correctness on the application.

The consistent ordering of failures with other events is particularly important. For instance,

we can be sure that after the control program learns of a process failure, it will not receive

any further sensor readings from the process. This simplifies the conditions attached to rules

in the control program. The ramifications of this model and the synchronization protocols

needed to implement it efficiently are discussed by Birman and Joseph [1987]. Details of

the adaptation of this model to cover the logical consistency issues that arise in Meta are

presented by elsewhere [Wood 1991].
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A difficulty with virtual synchrony is that it requires the system to occasionally reorder

events in an execution to fit the logical requirements of the model. For example, it proves

necessary to impose an ordering on failures that might not correspond to the order in which

failures actually occurred, or to pretend that a failed process did (or did not) see some event

before it failed. If there is external evidence establishing otherwise (such as a file written by

a process just before it died) or if processes have some way of communicating outside Isls,

then the illusion of virtual synchrony will be violated. In most of our previous uses of Isis

this has not been a problem since all communication takes place via Isis. It is possible that

there are distributed control algorithms that cannot be represented in Meta, as it currently

exists, because of its use of virtual synchrony. We leave this as an open question for future

study.

7.3 Atomicity

When Meta operations trigger actions, problems of atomicity are raised. For example,

suppose a Meta rule reacts to a failure by selecting a lightly loaded machine, reserving it,

and instantiating a program on it. If several such rules are triggered simultaneously, one

must prevent the machine being reserved more than once.

Meta provides a simple default policy for controlling concurrency, in which the action part

of each rule is a critical region protected by a single mutual exclusion lock for the entire

control program. Thus, in situations where a rule might trigger a sensor-actuator feedback

loop, rules that monitor sensors or trigger actuators will be strictly serialized. In particular,
this is the case for the machine reservation rule mentioned above.

The style of locking used by Meta can result in inefficient synchronization patterns when

sets of rules do not in fact overlap on the sensors and actuators that are referenced. More

sophisticated users may choose to disable Meta's mutual exclusion lock on actions, and

provide their own mutual exclusion primitives coded as actuators.

8 Extending Meta to physical control systems

So far, we have discussed the Meta sensor/actuator model in the soft real-time world of

managing software applications. Sensors can also correspond to measured quantities in the

physical world, in which case Meta might be used to control the external environment. For

instance, a system for monitoring the environment in a machine room might monitor air

temperature and chilled water pressure. If the air conditioning system becomes overloaded,

the least critical pieces of computer equipment could be turned off in an orderly way, in

the hope of offering a degree of continued operation. A more ambitious example would be

controlling an industrial plant.
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We believe that there are many applications in which Meta could be used to monitor and

control real-world physical processes, and which would be difficult or impossible to solve

in the absence of such a tool. Examples of areas in which our user community is using or

experimenting with Isls and Meta include stock and bond trading systems, factory-floor job

scheduling in an industrial plant, clinical information systems in a hospital, and management

of the orbiting space laboratory NASA has proposed to build. All these applications have

real-time, external consistency requirements that are much more stringent than the kind of

application management described in this paper.

Physical quantities have different characteristics from internal, computer generated mea-

sures. Their values are often taken from a continuous domain and change slowly and

predictably. Whereas sensors corresponding to internal measures normally fail by crashing,

physical sensors may also fail by giving erroneous values. To accommodate applications

of this sort, the Meta architecture includes techniques for using collections of inaccurate

physical sensors to implement more reliable, accurate abstract sensors. This material is

explored elsewhere by Marzullo [1989].

9 Comparison with other control technologies

The problem of distributed application management has been largely ignored in the past

and seldom has system-level support for it been provided. In this section we look at related

work in the area. A significant amount work has been done on tools for monitoring the

behavior of distributed applications, while comparatively little attention has been paid to

mechanisms for controlling distributed applications. We are aware of no work that combines

the two: using the results of monitoring to automatically control an application.

9.1 Distributed performance monitoring and debugging

Many systems have been developed for instrumenting distributed plrograms to obtain per-

formance figures, or for distributed debugging. Several researchers have recognized the

benefits of viewing the data gathered from monitoring as a temporal database. Foremost

among these is Snodgrass [1988]. In his system data is extracted and analyzed by posing

queries in the temporal query language, TQuel, which is based on the relational calculus.

Lomlta conditions, based on real-time interval logic expressions, are equivalent in expressive

power, but arguably easier to use. More importantly, by adding control to monitoring we

have closed the loop and produced a feedback control system.
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9.2 Distributed operating systems

Many of the functions of what we call the control program are functions that are more

usually associated with an operating system: in particular scheduling and resource manage-

ment. Indeed, our choice of the term control program is intended to reinforce this similarity.

In a general purpose distributed operating system, such as Locus [Walker et al. 1983], the

set of resources and control parameters is fixed by the operating system, and usually limited

to the lowest common denominator of the applications envisaged.

A common facility is remote ezecution, in which unrelated nondistributed programs are

allocated to or migrated between machines in order to share the available load more evenly

[Douglis and Ousterhout 1987, Litzkow et al. 1988]. Load sharing is easily implemented

using Meta, but Meta provides much richer facilities for describing the inter-relationships

and dependencies between the processes making up a true distributed application. With

Meta, the programmer can build operating-system-like facilities, but at the application
level.

9.3 Configuration of distributed applications

There are a small number of systems for controlling or configuring distributed applications

that take a more structured view of the application, permitting a finer degree on control.

The RM2 distributed resource manager [Craft 1983], permits the construction of compound

software resources, which are similar to our notion of a distributed application. Although

resource requirements and preferences can be specified when configuring an application with

RM2, only static attributes such as memory size and processor type may be used. There is

no counterpart to Meta sensors so that dynamic control such as load sharing is not possible.

Finally, the RM2 implementation has a small number of fixed resource allocation policies,

whereas with Lomita the policy may be specified by the programmer.

The Conic language and system [Kramer et al. 1985] is perhaps the most thorough attempt

at dynamic reconfiguration for distributed programs. A Conic application is structured as

a set of modules and communication ports. Configuration consists of creating instances of

modules and connecting input and output ports in a type-safe way. Conic supports dynamic

reconfiguration by allowing new modules to be created and existing ports to be reconnected

at run-time. While Conic provides some of the functionality necessary for application

management, there is no general notion corresponding to either sensors or actuators. Thus

configuration scripts cannot react to changes in the application or it environment, and

reconfiguration is restricted to modifying module connections and creating new modules.
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9.4 Rule-based systems

Rule-based techniques, like those in Meta, are commonly used in debuggers for concurrent

programs. Usually these have taken the form of production rule breakpoints in which a

condition over the values of variables and the program counters of several processes triggers

an action such as suspending the program being debugged. Bruegge's Pathrules language

[Bruegge and Hibbard 1983] is a good example. Debugging researchers seem not to have

recognized the general utility of production rule systems for other kinds of monitoring and

control of distributed applications.

Rule-based techniques have been used widely in expert systems. The approach used by

Meta resembles some expert systems of the distributed blackboard model, especially those

used in soft real-time control applications [Cruise et al. 1987]. However ISlS provides a

sounder basis for handling failures and achieving consistency that is more appropriate to

the environments in which Meta will be used. The production rules provided by Meta are

similar in structure to expert system rules, but we believe that the actual rules written

for an application management system will be much less complex, and less ambitious than

those in typical expert systems.

9.5 User interfaces for distributed control

A graphical user interface complements a textual language for distributed application man-

agement. The information derived from application monitoring can be much easier to

comprehend when displayed in graphical form, and a graphical editor interface provides

a particularly powerful way of experimenting with different control policies. ConicDraw

[Kramer et al. 1989] is such a graphical interface to the Conic configuration system. It

displays the current structure of the system, and provides graphical counterparts to the

facilities of the Conic configuration language.

Magic Lantern is a graphical application management tool being developed in concert with

the Meta project [VanRenesse 1990]. It provides a comprehensive set of graphical objects

such as strip chart recorders, bar graphs, scroll bars, buttons and text objects. These

objects can derive information from Meta sensors, and invoke Meta actuators. The layout

of the display and the connections to Meta axe completely programmable by the Magic

Lantern user. Magic Lantern may also be used independently of Meta and Isls. With this

tool one can experiment interactively with different control strategies and receive immediate

feedback in terms of the performance of the application. This gives a fuller understanding

of the behavior of the application, leading to a better automatic control policy in the form

of a Lomita script.
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10 Conclusions

We have described the Meta system, which provides a sound basis for implementing dis-

tributed application control mechanisms. Although high level in approach and structure, it

has proved possible to express and maintain rigorous semantics in managing a distributed

application.

The widespread availability of distributed computing and operating systems has made it

increasingly important to focus on the technologies by which large systems can be composed

from sets of components. By offering a programming methodology for distributed control,

Meta makes it easier to build robust distributed applications using components that, in-

dividually, are incapable of tolerating faults. The approach also makes it easier to reason

about and establish the correctness of the resulting control structures. These are important

steps towards the open, heterogeneous distributed operating systems that will characterize

the next generation of distributed programming environments.

Availability

Version 1.2 of Meta has been implemented using the Isxs system and is being distributed in

source code form within the Isls user community of about 300 sites. This version contains a

complete implementation of the Meta sensor and actuator subroutine interface described in

Section 4, and the built-in Machine and Process sensors. The Lomita language, as described

in Sections 5 and 6 is still being implemented. The 1.2 release contains an earlier query

language based on the relational algebra. We have also produced an experimental C-Prolog

interface to Meta that we are no longer releasing. A preliminary version of the Magic

Lantern system is also included in the Isis release.
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